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Abstract
In modern biomedical classification applications, data are often collected from multiple modalities, ranging from various

omics technologies to brain scans. As different modalities provide complementary information, classifiers using multi-

modality data usually have good classification performance. However, in many studies, due to the high cost of measures,

in a lot of samples, some modalities are missing and therefore all data from those modalities are missing completely. In this

case, the training data set is a block-missing multi-modality data set. In this paper, considering such classification problems,

we develop a new weighted nearest neighbors classifier, called the integrative nearest neighbor (INN) classifier. INN har-

nesses all available information in the training data set and the feature vector of the test data point effectively to predict

the class label of the test data point without deleting or imputing any missing data. Given a test data point, INN deter-

mines the weights on the training samples adaptively by minimizing the worst-case upper bound on the estimation error

of the regression function over a convex class of functions. Our simulation study shows that INN outperforms common

weighted nearest neighbors classifiers that only use complete training samples or modalities that are available in each sam-

ple. It performs better than methods that impute the missing data as well, even for the case where some modalities are

missing not at random. The effectiveness of INN has been also demonstrated by our theoretical studies and a real appli-

cation from the Alzheimer’s disease neuroimaging initiative.
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1 Introduction
Binary classification is a fundamental problem in statistics. Given a training data set, the goal of binary classification is to
build a classifier that can predict the class label y ∈ {0, 1} of a new data point using its feature vector X . It has many
important applications in biomedical research such as cancer diagnosis and medical image classification. With the
advance of science and technology, features in modern biomedical classification applications are often collected from mul-
tiple modalities (sources or types), ranging from microarray gene expression to single nucleotide polymorphism (SNP) chip
array, microRNA expression, DNA methylation, and biomedical images. Since different modalities could provide comple-
mentary information, integrative classifiers using multi-modality data usually deliver better classification performance than
methods that only use features from a single modality. The advantages of integrative classifiers have been demonstrated
empirically and theoretically. For example, as shown in studies about the diagnosis of Alzheimer’s disease,1,2 integrative
classifiers using features from structural magnetic resonance imaging (MRI) for brain atrophy measurement, functional
imaging (e.g. positron emission tomography (PET)) for hypometabolism quantification, and cerebrospinal fluid (CSF)
for quantification of specific proteins, deliver much better classification performance than methods that only use features
from one of those modalities. In a recent theoretical study, Li and Li3 demonstrated that an integrative linear discriminant
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analysis using features from multiple modalities is guaranteed to asymptotically reduce classification error compared with
running linear discriminant analysis on features from each modality individually.

Although the integrative analysis of multi-modality data provides an effective way of pooling complementary informa-
tion, one special challenge for using multi-modality data is to handle missing data, which is prevalent due to some reasons
such as the high cost of measures, patient non-compliance and drop-outs.3–7 In many cases, all features from a certain
modality are missing completely, that is, a complete block of the data is missing. For example, in some genome-wide asso-
ciation studies where we often combine data from multiple studies, subjects in certain studies may have both gene expres-
sion and DNA methylation measurements while subjects in other studies may only have gene expression measurements.5

In the Alzheimer’s disease neuroimaging initiative (ADNI) study (http://adni.loni.ucla.edu/), half of the subjects have both
structural and functional imaging scans while others only have structural imaging scans. In such situations, data are missing
by blocks. They are called block-missing multi-modality data in this paper.

One example of block-missing multi-modality data is shown in the left panel of Figure 1. In this example, features are
collected from three modalities. For i = 1, 2, 3, we have pi features from the ith modality. The blank regions with a ques-
tion mark indicate missing data and the colored regions represent the observed data. For some training data points, features
collected from Modality 2 and/or Modality 3 are missing completely. The training data points are divided into four groups
according to four missing patterns. The number of training data points with complete features, denoted by n1, can be much
smaller than the total number of the training data points n = n1 + n2 + n3 + n4. As we consider the supervised classifica-
tion problem in this paper, we assume that the class label of each training data point is observed. The n-dimensional class
label vector, which is available, is not shown in Figure 1.

In order to use a block-missing multi-modality training data set to build a classifier that can predict the class label of a
test data point with complete features, a common strategy is to use the complete training samples only and classification
methods such as k-NN, logistic regression, and linear discriminant analysis. This strategy can waste a lot of useful infor-
mation, especially when we have a significant amount of incomplete training samples. Moreover, it ignores the sampling
bias when some modalities are missing not at random. Another strategy is to impute the missing features first and then build
classifiers using the imputed training data set. We can impute the missing features with the mean values of the available
observations, the weighted mean values,8 or the conditional expectations based on the expectation–maximization algo-
rithm.9 Some other imputation methods include the matrix completion method incorporating the soft-thresholded singular
value decomposition10,11 and methods utilizing the random forest algorithms.12–14 These imputation methods are generally
effective when the positions of the missing data are random, but they can be unstable when data are missing in blocks. In
the past several years, motivated by applications in genomic data integration, Cai et al.5 proposed a framework of structured
matrix completion to impute block-missing multi-modality data. Their proposed method can be used in the case where
features are collected from two modalities. Xue and Qu7 proposed a multiple block-wise imputation (MBI) approach.
The effectiveness of MBI has been demonstrated in the linear regression setting. It is not clear whether a two-step
method, which uses MBI to impute the block-missing multi-modality data first and then build a classifier using the
imputed data, is effective for classification problems.

Figure 1. An example of block-missing multi-modality data with three modalities.

2 Statistical Methods in Medical Research 0(0)

http://adni.loni.ucla.edu/
http://adni.loni.ucla.edu/


Besides the above methods, there are a few integrative classification methods that utilize all available information in the
block-missing multi-modality data without deleting or imputing missing data. For example, Yuan et al.2 proposed the
incomplete multi-source feature learning (IMSF) method. IMSF formulates the prediction problem as a multi-task learning
problem by first decomposing the prediction problem into a set of classification tasks (one for each missing pattern), and
then building linear classifiers for all tasks simultaneously. Xiang et al.15 introduced an incomplete source-feature selection
(ISFS) method which performs simultaneous feature-level and modality-level analysis. ISFS can be considered as a con-
strained version of IMSF. Recently, Li and Li3 proposed an integrative linear discriminant analysis method. To the best of
our knowledge, most existing integrative classification methods focus on parametric models for block-missing multi-
modality data. They assume either certain parametric distribution of the data or certain forms of decision boundaries.
These parametric models are of limited use in applications where little knowledge of the data generation process is avail-
able a priori. For multi-modality data, as different modalities and the class label are often associated in different ways, it is
difficult to assume a reasonable parametric model. In comparison, non-parametric models are usually more flexible in
accommodating different data structures. There is a pressing need for the development of flexible non-parametric classi-
fication methods for block-missing multi-modality data.

For classification problems with a complete training data set, there is an extensive literature on non-parametric methods
(see, e.g. the book16 and the references therein). With the flexibility and computational efficiency, k-nearest neighbor
(k-NN) is one of the most popular non-parametric classifiers. Stone17 and Devroye et al.18 have shown that k-NN is uni-
versally consistent if we let k grow with the sample size n and k/n converge to zero. Some recent studies on weighted
nearest neighbors classifiers19–25 indicate that the classification performance of k-NN can be further improved by using
decreasing weights on the successively more distant neighbors and/or choosing the number of nearest neighbors adaptively
according to the density of the feature vector. Among those weighted nearest neighbors classifiers, the k∗-nearest neighbor
(k∗-NN) classifier proposed by Anava and Levy21 is perhaps the most flexible one. It adaptively determines both the
number of nearest neighbors k and the weights on those nearest neighbors. For each test data point x0, the weight
vector in the k∗-NN is calculated by minimizing an upper bound of the estimation error of the regression function η(x) =
P(y = 1 ∣ X = x) at x0. The effectiveness of k∗-NN has been demonstrated empirically on many benchmark data sets,
showing superior performance over the standard k-NN classifier.

In this paper, motivated by the idea of k∗-NN and the minimax affine estimator introduced by Dohono26 for the esti-
mation of the regression function, we develop a new weighted nearest neighbor classifier, called the integrative nearest
neighbor (INN) classifier, for binary classification problems with a block-missing multi-modality training data set. INN
does not delete or impute any missing data. It is a plug-in classifier that uses all available information to estimate the regres-
sion function η(x). For a test data point x0, the proposed INN estimate of η(x0) is a weighted average of the class labels (0 or
1) of training data points, where the weights on the class labels are determined by minimizing the worst-case upper bound
on the estimation error of η(x0) over a convex class of functions. The corresponding optimization problem is a convex
minimization problem which can be solved efficiently by an iteration algorithm. Our proposed INN classifier harnesses
all available information in the block-missing multi-modality training data and the feature vector of the test data point
effectively to estimate the regression function and predict the class label. It can deliver better classification performance
than methods that only use complete training samples or modalities that are available in each sample. In addition, for dif-
ferent test data points, INN uses adaptive number of nearest neighbors and weights. It can outperform many existing
weighted nearest neighbor classifiers that use the same weight vector for all test data points. The effectiveness of INN
has been demonstrated by our theoretical studies, simulated examples, and a real application from the Alzheimer’s
Disease Neuroimaging Initiative. The comparison between INN and methods that impute the missing data also indicates
the advantages of INN.

The rest of this paper is organized as follows. In Section 2, we introduce the statistical setting and our proposed INN
classifier. In Section 3, we show some theoretical properties of INN. In Sections 4 and 5, we demonstrate the effect-
iveness of INN using simulated examples and the ADNI data set, respectively. We conclude this paper in Section 6 and
provide all technical proofs in the Appendix. Some additional simulation studies are shown in the Supplemental
Material. The notations in this paper are defined as follows. We use bold upper case letters to denote matrices. For
a n × p matrix X, we use XT to denote its transpose, and xTi and Xj to denote its i-th row and jth column, respectively.
For a set S = {j1, j2, , js}, we use |S| to denote the number of elements in the set S and Sc to denote the complement of
S. For a vector xi = (xi1, xi2, , xip)T , we use xi,S to denote the sub-vector (xij1 , xij2 , , xijs )

T . We write xi ≥ 0 if xij ≥ 0 for
each j. In addition, we denote the ℓ2-norm of a vector x as ‖x‖2. For a random sample θ1, θ2, , θn, let θ(1), θ(2), , θ(n)
denote a permutation of θ1, θ2, , θn such that θ(1) ≤ θ(2) ≤ ... ≤ θ(n). We denote I {·} as the indicator function, and 1
as the vector of 1’s.
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2 Statistical setting and methodology

2.1 Statistical setting
Consider the binary classification problem with the class label y ∈ {0, 1} and the p-dimensional feature vector X collected
from K modalities. Assume that there are pk features from the kth modality. The feature vector X is assumed to be sampled
from a multivariate distribution PX with support Ω, and its label y is 1 with probability η(X ) and 0 with probability
1− η(X ). Furthermore, we assume that each modality can be missing. The mechanism of missingness can be missing com-
pletely at random (MCAR), missing at random (MAR), or missing not at random (MNAR).27 If the kth modality is missing,
all pk features from that modality are missing completely.

Our goal is to build a classifier that can predict the class label y ∈ {0, 1} when all p features collected from K modalities
are observed. If the regression function η(X ) is known, we can use the Bayes classifier

Φ∗(X ) = I{η(X )≥1/2},

which is the theoretically optimal classifier that minimizes the misclassification error rate. In practice, η(X ) is often unknown, but
we have access to n training samples {(xi, yi) : i = 1, 2, , n} generated from the above model. As each modality of each training
sample can be missing, we use γik to denote the missingness indicator for the kth modality of the ith training sample, where γik =
1 when the modality is observed, and 0 otherwise. Let γi = (γi1, γi2, , γiK )

T ∈ RK and Γ = (γ1, γ2, , γn)T ∈ Rn×K . The feature
matrix of the training data, denoted by X = (x1, x2, , xn)T ∈ Rn×p, is a block-missing multi-modality data set as shown in
Figure 1. Since we consider the supervised classification problem here, we assume the class labels of all training samples are
available. Denote the class label vector of the training data as y = (y1, y2, , yn)T .

As there are K modalities in total and each modality can be missing, there are 2K − 1 missing patterns with at least one
observed modality theoretically. For m = 1, 2, , 2K − 1, we use Sm to denote the index set of the observed features in the
mth missing pattern. Without loss of generality, we assume that only the firstM missing patterns appear in the training data
set. In practice, M can be much smaller than 2K − 1. According to the missing pattern of the feature vector, we can divide
the n training samples into M groups. For each m ∈ {1, 2, , M}, let sm = |Sm|, and nm denote the number of training
samples in the mth group. For 1 ≤ i ≤ nm, let x

[m]
i ∈ R p, x[m]i,Sm

∈ R|Sm|, and y[m]i denote the vector of all features, the
vector of the observed features, and the class label of the ith training sample in the mth group, respectively. In addition,
let y[m] = (y[m]1 , y[m]2 , , y[m]nm

)T , X[m] = (x[m]1 , x[m]2 , , x[m]nm
)T , and X[m]

Sm
= (x[m]1,Sm

, x[m]2,Sm
, , x[m]nm,Sm

)T . We can use the example
shown in Figure 1 to understand these notations. The feature matrix X shown in the left panel of Figure 1 are partitioned
into four groups according to four different missing patterns (M = 4). We have S1 = {1, 2, ..., p1 + p2 + p3},
S2 = {1, 2, ..., p1 + p2}, S3 = {1, 2, ..., p1, p1 + p2 + 1, ..., p1 + p2 + p3}, and S4 = {1, 2, ..., p1}. As shown in the
right panel of Figure 1, the n2 × (p1 + p2 + p3) matrix X[2] denotes the matrix of all features of the training samples in
Group 2. The n2 × (p1 + p2) matrix X[2]

S2
denotes the matrix of the observed features of the training samples in Group 2,

and x[2]2,S2
denotes the vector of the observed features of the second training sample in Group 2.

2.2 Method
Given a block-missing multi-modality training data set {(X[m]

Sm
, y[m])}Mm=1 and a test data point x0 ∈ R p, we will develop a

plug-in classifier,Φn(x0) = I{η̂(x0)≥1/2}, which mimics the Bayes classifier by using an estimator of the regression function
η(x0) = P(y = 1 ∣ X = x0). Note that if the features in the test data point x0 are collected from K ′ modalities only where
K ′ < K , we can still use our following proposed method and the block-missing multi-modality training data collected from
those K ′ modalities to build an applicable classifier. Therefore, without loss of generality, we assume that all p features in
the test data point x0 are available.

We consider an estimator of η(x0) as a weighted average of the training labels with the following format

η̂(x0) =
∑M
m=1

∑nm
i=1

ω[m]
i y[m]i , (1)

where
∑M

m=1

∑nm
i=1 ω

[m]
i = 1 and ω[m]

i ⩾ 0 for each 1 ≤ m ≤ M and 1 ≤ i ≤ nm. To obtain a good weight vector

ω = (ω[1]
1 , ω[1]

2 , ..., ω[1]
n1
, ω[2]

1 , ω[2]
2 , ..., ω[M ]

nM
)T , we consider minimizing the estimation error |η̂(x0)− η(x0)|, that is,

solving the following minimization problem

min
ω

|η̂(x0)− η(x0)| s.t. ω ≥ 0and
∑M
m=1

∑nm
i=1

ω[m]
i = 1. (2)
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However, due to the unknown η(x0), we cannot solve the above optimization problem directly. Motivated by the
idea of k∗-NN and the minimax affine estimator introduced by Donoho26 for the estimation of the regression function,
we assume that the regression function η(x0) is known to lie in a convex function class. Then, for each x0, we propose
to learn the weight vector ω by minimizing the worst-case upper bound of |η̂(x0)− η(x0)| over the convex function
class.

To that end, for each 1 ≤ m ≤ M , we define ηm(x) = P(y = 1 ∣ XSm = xSm ). We can show that
ηm(x) = E(η(X ) ∣ XSm = xSm ). For any τ = (τ1, τ2, , τM ) ≥ 0 and L > 0, let F (τ, L) denote the set of functions f :Ω →
R which satisfies |E(f (X )|XSm = xSm )− f (x0)| ≤ τm + L‖xSm − x0,Sm‖2 for each x, x0 ∈ Ω and m ∈ {1, 2, , M}.
We assume that η(x) ∈ F (τ∗, L∗), where τ∗ = (τ∗1, τ

∗
2, , τ

∗
M ) ≥ 0 and L∗ > 0. We can check that F (τ∗, L∗) is a

convex function class. In addition, we can show that the assumption η(x) ∈ F (τ∗, L∗) is satisfied when the regression
function η(x) is Lipschitz continuous and there is no missing data (that is, M = 1 and S1 = {1, 2, ..., p}). Therefore,
the condition η(x) ∈ F (τ∗, L∗) can be considered as a generalized Lipschitz condition for the block-missing multi-
modality data.

Next, we derive the worst-case upper bound of |η̂(x0)− η(x0)| over the convex function class F (τ∗, L∗). To obtain that,
we firstly decompose (2) as follows

η̂ x0( ) − η x0( )∣∣ ∣∣ = ∑M
m=1

∑nm
i=1

ω[m]
i y[m]i − η x0( )

∣∣∣∣∣
∣∣∣∣∣

⩽
∑M
m=1

∑nm
i=1

ω[m]
i y[m]i − ηm(xi)

( )∣∣∣∣∣
∣∣∣∣∣︸�����������������︷︷�����������������︸

:=P1

+
∑M
m=1

∑nm
i=1

ω[m]
i ηm(xi)− η(x0)

( )∣∣∣∣∣
∣∣∣∣∣︸�����������������︷︷�����������������︸

:=P2

.

We consider the case where the weight vector ω only depends on the observed features {X[m]
Sm

}Mm=1 of the training data and

the test data point x0. In addition, we assume that y1, y2, , yn are conditionally independent given {X[m]
Sm

}Mm=1 and the

missing data indicator matrix Γ. As |y[m]i − ηm(xi)| ≤ 1, by the Hoeffding’s inequality, we can show that for any t0 > 0,

P P1 ≥ t0‖ω‖2 ∣ x0, {X[m]
Sm

}Mm=1, Γ
( )

≤ 2 exp (− t20/2).

In addition, according to the assumption that η(x) ∈ F (τ∗, L∗), we have

P2 ≤
∑M
m=1

∑nm
i=1

ω[m]
i τ∗m + L∗‖x[m]i,Sm

− x0,Sm‖2
( )

.

Hence, with probability at least 1− 2 exp (− t20/2), the worst-case estimator error supη∈F (τ∗,L∗) |η̂(x0)− η(x0)| can be
bounded by

t0‖ω‖2 +
∑M
m=1

∑nm
i=1

ω[m]
i τ∗m + L∗‖x[m]i,Sm

− x0,Sm‖2
( )

. (3)

Therefore, we propose to learn the weight vectorω by minimizing the above worst-case upper bound, equivalently, solving
the following minimization problem

min
ω

{
‖ω‖ +

∑M
m=1

∑nm
i=1

ω[m]
i · L̃‖x[m]i,Sm

− x0,Sm‖2 + τ̃m
( )}

s.t. ω ≥ 0 and
∑M
m=1

∑nm
i=1

ω[m]
i = 1,

(4)

where L̃ = L∗/t0 and τ̃m = τ∗m/t0. In practice, as we do not know L̃ or τ̃m’s, we can consider them as tuning parameters. An
independent validation data set or cross-validation techniques can be used to choose the values of these parameters. We
only need to tune t0 if we know τ∗ and L∗.
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The minimization problem (4) is a convex optimization problem. We adopt the algorithm shown in Anava and Levy21 to
obtain the exact solution of (4). Let ω̂ = (ω̂[1]

1 , ..., ω̂[1]
n1
, ..., ω̂[M ]

1 , ..., ω̂[M ]
nM

)T denote the solution of (4). Our proposed INN
classifier is

Φn(x0) = 1 if η̂(x0) =
∑M

m=1

∑nm
i=1 ω̂

[m]
i y[m]

i ≥ 1
2 ,

0 otherwise.

{

The details of INN classifier are shown as follows.
Since different modalities and the class label are often associated in different ways, it is difficult to assume a reasonable

parametric model for the multi-modality data. As a non-parametric classifier, INN does not assume any specific structure of
the regression function or shape of the decision boundary. It is appropriate for classification problems with features col-
lected from multiple modalities. In addition, as shown in step 4, since both α[m]i and λk depend on x0, INN uses adaptive
numbers of nearest neighbors as well as weights for different test data points. It is more flexible than some existing
weighted nearest neighbor classifiers such as k-NN, optimal weighted nearest neighbor classifier,19 and the sliced
k-NN20 that use either a fixed number of nearest neighbors or a fixed weight vector. The proposed INN classifier includes
the k∗-NN classifier21 for complete data sets as a special case. INN incorporates all available information in the
block-missing multi-modality training data and the feature vector of the test data point effectively to estimate the regression
function and predict the class label. It does not delete or impute any missing data. Next, we will demonstrate the effect-
iveness of INN by both theoretical and numerical studies.

3 Theoretical study
In this section, we establish the theoretical guarantee of INN. We assume that the underlying regression function
η(x) ∈ F (τ∗, L∗), where τ∗ = (τ∗1, τ

∗
2, , τ

∗
M ) ≥ 0 and L∗ > 0. In order to evaluate whether INN can utilize incomplete

samples, we assume the missing data indicator matrix Γ is given and therefore the number of samples with different
missing patterns, denoted by n1, n2, , nM , are known.

We will first study how the parameter t0 determines the number of nearest neighbors used in the INN classifier. Then, we
show that the proposed INN classifier agrees with the optimal Bayes classifier with high probability for each test data point
x0 ∈ Ωϵ = {x : |η(x)− 1/2| ≥ ϵ}, where ϵ ∈ (0, 1/2). For m = 1, 2, ..., M and i = 1, 2, ..., nm, define

β[m]i = L∗‖x[m]i,Sm
− x0,Sm‖2 + τ∗m.

Let β(1), β(2), , β(n) be a permutation of β[m]i ’s such that β(1) ≤ β(2) ≤ ... ≤ β(n). For each x0 ∈ Ωϵ and m = 1, 2, ..., M ,

define F [m]
x0 (t) = P(‖xi,Sm − x0,Sm‖ ⩽ t ∣ x0, Γ). In addition, define N (x0) =

∑M
m=1 nmF

[m]
x0 ((ϵ− τ∗m)/L

∗).
Our following Proposition 1 shows how the parameter t0 determines the number of nearest neighbors kx0 used in the

INN classifier for the test data point x0.

Proposition 1 Let kx0 denote the number of positive ω̂[m]
i ’s for the test data point x0. We have

(a) kx0 = 1 if and only if t0 ≤ β(2) − β(1).
(b) kx0 = k + 1 if and only if ��������������������∑k

i=1

(β(k+1) − β(i))
2

√√√√ < t0 ≤
��������������������∑k+1

i=1

(β(k+2) − β(i))
2

√√√√ ,

where 1 ≤ k ≤ n− 2.

(c) kx0 = n if and only if t0 >
��������������������∑n−1

i=1 (β(n) − β(i))
2

√
.

Proposition 1 indicates that the number of nearest neighbors used in INN for the test data point x0 increases from 1 to n
as t0 increases from 0 to the infinity. The proposed INN classifier is equivalent to the 1 nearest neighbor classifier when
t0 ≤ β(2) − β(1). When t0 is sufficiently large, INN is similar to the n nearest neighbor classifier where the weight of each
training data point is about 1/n. In our proposed INN classifier, we assume that t0 does not depend on x0. As all β

[m]
i ’s

depend on the test data point x0, the numbers of nearest neighbors used in INN are still different for different test data
points although we use a common t0.
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Similar to many existing nearest neighbor based classifiers,19,20,23 the property of INN depends on the bound on the
distance between x0 and its nearest neighbors. For the block-missing multi-modality data considered in this paper, β(k)
can be viewed as the distance between the test data point x0 and its kth nearest neighbor in the block-missing multi-
modality training data set. Our following Proposition 2 provides a high probability bound on β(k).

Proposition 2 Suppose that β[m]i ’s are conditionally independent given the test data point x0 and the missing data indicator
matrix Γ. For any ϵ > 0, x0 ∈ Ωϵ and positive integer k ≤ N (x0)/2, we have

P(β(k) > ϵ ∣ x0, Γ) ≤ exp (− 3k/14).

Next, we establish the theoretical guarantee of INN by showing its point-wise agreement with the Bayes classifier.

Theorem 1 Consider a fixed test data point x0 ∈ Ωϵ = {x : |η(x)− 1/2| ≥ ϵ}, where ϵ ∈ (0, 1/2). Let δ ∈ (0, 1) be a prob-
ability tolerance and choose t0 =

������������
2 log (4/δ)

√
, L̃ = L∗/t0, τ̃ = τ∗/t0 in INN. Suppose the following assumptions hold:

A1. The regression function η(x) ∈ F (τ∗, L∗), where τ∗ = (τ∗1, τ
∗
2, , τ

∗
M ) ≥ 0 and L∗ > 0.

A2. The class labels y1, y2, , yn are conditionally independent given {X
[m]
Sm

}Mm=1 and the missing data indicator matrix Γ.
The distances β[m]i ’s are conditionally independent given the test data point x0 and the missing data indicator matrix Γ.
A3. For any positive integer k ≥ 5 log (4/δ), we have

E exp −
∑k−1

i=1

(β(k) − β(i))
2

2

( )
∣ x0, Γ

( )
≤ δ2

16
.

If the number of training data points with different missing patterns satisfy

N x0( ) =
∑M
m=1

nmF
[m]
x0

(
ϵ− τ∗m
L∗

) ≥ 10 log (
4

δ
),

then we have

P(Φn(x0) = Φ∗(x0) ∣ x0, Γ) ≥ 1− δ.

Note that Assumption A1 can be considered as a generalized Lipschitz condition on the regression function for the
block-missing multi-modality data. When this assumption holds, we can estimate η(x0) from those of the neighbors of
x0 where we can use β[m]i ’s to measure the distances between x0 and all training data points in the block-missing multi-
modality data set. Similar smoothness conditions28,20,23 on the regression function have been widely used for non-
parametric regression and classification problems with a complete training data set.

Assumption A2 is a condition on the missing data mechanism. It is a weak condition which can hold when modalities
are missing completely at random, missing at random, or missing not at random. For example, consider a binary classifi-
cation problem where features are collected from two modalities and there is only one feature from each modality. Suppose
these two features are independent, each follows the uniform distribution U [0, 1], and P(yi = 1 ∣ x = xi) = (xi1 + xi2)/2.
In addition, assume that the first feature is always observed and the second feature is MCAR, that is,P(γi2 = 1 ∣ yi, xi) = ρ,
where ρ ∈ (0, 1) is a constant. Suppose that there are n training samples generated independently by the above model.
Without loss of generality, assume that the first n1 samples are complete. Then, we have M = 2, S1 = {1, 2},
S2 = {1}, η1(xi) = (xi1 + xi2)/2, and η2(xi) = E((xi1 + xi2)/2 ∣ xi1) = (2xi1 + 1)/4. We can check that both
Assumptions A1 and A2 hold. These two assumptions also hold when the second feature is MAR (e.g.
P(γi2 = 1 ∣ yi, xi) = I {xi1<0.5}) or MNAR (e.g. P(γi2 = 1 ∣ yi, xi) = I{xi2<0.5}).

Assumption A3 is a technical condition that guarantees that INN will not use too many nearest neighbors for x0 with
high probability. When A3 holds, we can check that with probability at least 1− δ/4, the number of nearest neighbors used
in INN for the test data point x0 is less than 5 log (4/δ).

Theorem 1 indicates that under some assumptions, our proposed INN classifier agrees with the optimal Bayes classifier
with high probability as long as N (x0) is large enough. For the classification problem with a complete training data set,
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similar theoretical results for some non-parametric classifiers such as k-NN and the fixed-radius nearest neighbor classifier
have been shown in Chen and Shah.29 As far as we know, there is no existing similar result for non-parametric classifiers
learned from a block-missing multi-modality training data set.

The quantity N (x0) in Theorem 1 can be viewed as the number of samples in the block-missing multi-modality training
data set that are effectively utilized by INN. The contribution of the data with the mth missing pattern is
nmF [m]

x0
((ϵ− τ∗m)/L

∗), which depends on the sample size nm, the difference between ηm(X ) and η(X ), and the distribution
of the feature vector. If we only use complete samples (suppose they are in Group 1) to build the INN classifier, only
n1F [1]

x0 ((ϵ− τ∗1)/L
∗) samples are effectively utilized, which can be much smaller than N (x0) in many cases, especially

when the percentage of complete samples is low. Therefore, Theorem 1 not only provides the theoretical guarantee of
INN but also shows that INN can effectively incorporate incomplete samples in the block-missing multi-modality training
data set.

In Theorem 1, we can also choose L̃ = L/
������������
2 log (4/δ)

√
and τ̃ = τ/

������������
2 log (4/δ)

√
where L ≥ L∗ and τ ≥ τ∗. However, we

need to guarantee that

Ñ x0( ) =
∑M
m=1

nmF
[m]
x0 (

ϵ− τm
L

) ≥ 10 log (
4

δ
).

If L is much greater than L∗ or τm is much greater than τ∗m for each m, then Ñ (x0) will be a relatively small number and thus
we can only consider a relatively large probability tolerance δ such that the above condition is satisfied. Therefore, in this
case, we can only guarantee that the proposed INN classifier agrees with the Bayes classifier with a relatively small prob-
ability. Our simulation results shown in Section 4 in the Supplemental Material also indicate that INN can perform well
when we use relatively large values for L̃ and τ̃. However, INN can lose performance if we choose too large values for
L̃ and τ̃.

4 Simulation study
In this section, we evaluate the effectiveness of INN using simulated examples. We study nine examples, including seven
examples with features collected from two modalities and two examples with features collected from three modalities. In
each example, to guarantee that at least one modality is available, we assume the first modality is always observed while the
other modalities can be missing. Two missing mechanisms, MCAR and MNAR, are considered in each example.

We compare the empirical misclassification error rate (multiplied by 100) of INN with those of (1) kNN-C: the standard
k-NN classifier only using the complete data; (2) k∗NN-C: the k∗-NN classifier only using the complete data; (3) kNN-1:
the standard k-NN classifier only using the data fromModality 1; (4) k∗NN-1: the k∗-NN classifier only using the data from
Modality 1; (5) kNN-Mean: the standard k-NN classifier using the imputed data set in which the missing features are
imputed by the mean imputation method; (6) k∗NN-Mean: the k∗-NN classifier using the imputed data set in which the
missing features are imputed by the mean imputation method; (7) kNN-RF: the standard k-NN classifier using the
imputed data set in which the missing features are imputed by the random forest algorithm in the randomForest R
package30; (8) k∗NN-RF: the k∗-NN classifier using the imputed data set in which the missing features are imputed by
the random forest algorithm.

We first consider seven examples with features collected from two modalities. In each example, we set p1 = p2 = 20.
Features from Modality 1 are always observed while features from Modality 2 can be missing. Therefore, we haveM = 2,
S1 = {1, 2, ..., 40}, and S2 = {1, 2, ..., 20}. To generate a block-missing multi-modality training data set, we obtained a
complete data set first and then used a MCAR or MNAR model to generate missing data. In each example, when we used
the MCAR model, we set P(γi2 = 1) = ρ. When we used the MNAR model, we set
P(γi2 = 1 ∣ xi, yi) = 1−Φ(a · (xi,A2 − c)T (xi,A2 − c)− b), where Φ(·) is the cumulative distribution function of the stand-
ard normal distribution and the set A2 = {p1 + 1, p1 + 2, ..., p1 + p2}. The parameters a, b, and the vector c were chosen
such that the percentage of complete samples in the MNAR case was around ρ for comparison purpose. The details of these
seven examples are shown as follows.

Example 1: All features of samples in Class 1 and Class 0 are generated independently from N (− 0.3, 1.52) and
N (0.3, 1.52), respectively. For the MCAR case, we set ρ = 0.4. For the MNAR case, we set a = −1, b = −50, and c =
0 such that the percentage of complete samples is about 40%.
Example 2: Feature vectors of samples in Class 1 and Class 0 are generated from Multivariate Normal (μ1, σ

2Σ) and
Multivariate Normal (μ2, σ

2Σ), respectively, where μ1 = (− 0.3, . . . , − 0.3)T , μ2 = (0.3, . . . , 0.3)T , and σ = 2.
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The matrix Σ = A⊗ B, where A is a 2 × 2 matrix with off-diagonal elements as 0.2 and the diagonal elements as 1, and
B is a matrix with the off-diagonal elements as 0.5 and the diagonal elements as 1. For the MCAR case, we set ρ = 0.4.
For the MNAR case, we set a = 0.01, b = 1.3, and c = 0.
Example 3: This example is almost the same as Example 2. We only change the matrix B to be a matrix where the
element in the ith row and jth column is 0.5|i−j|.
Example 4: All features of samples in Class 1 are generated independently from N (− 0.3, 1.52). All features of samples
in Class 0 are generated independently from the t-distribution with 6 degrees of freedom and the noncentral parameter as
0.4. For the MCAR case, we set ρ = 0.4. For the MNAR case, we set a = 0.01, b = 0.2, and
c = (0.161, 0.161, ..., 0.161)T .
Example 5: Feature vectors of samples in Class 1 and Class 0 are generated from Multivariate Normal (μ1, σ

2Σ1) and
Multivariate Normal (μ2, σ

2Σ2), respectively, where μ1 = (− 0.3, . . . , − 0.3)T , μ2 = (0.3, . . . , 0.3)T , and σ = 2. The
matrices Σ1 = A⊗ B1 and Σ2 = A⊗ B2, where A is a 2 × 2 matrix with off-diagonal elements as 0.2 and the diagonal
elements as 1, B1 is a matrix with the off-diagonal elements as 0.5 and diagonal elements as 1, and B2 is a matrix with
the element in the ith row and jth column as 0.5|i−j|. For the MCAR case, we set ρ = 0.4. For the MNAR case, we set
a = 0.01, b = 1.3, and c = 0.
Example 6: Feature vectors of samples in Class 1 and Class 0 are generated from Multivariate Laplace (μ1, σ

2Σ1) and
Multivariate Laplace (μ2, σ

2Σ2), respectively, where μ1 = (− 0.3, . . . , − 0.3)T , μ2 = (0.3, . . . , 0.3)T , and σ = 2. We
set Σ1 = A⊗ B1, Σ2 = A⊗ B2, where A is a 2 × 2 matrix with off-diagonal elements as 0.2 and diagonal elements as 1,
B1 is a matrix with the off-diagonal elements as 0.5 and diagonal elements as 1, and B2 is a matrix with the element in
the ith row and jth column as 0.5|i−j|. For the MCAR case, we set ρ = 0.4. For the MNAR case, we set a = 0.01,
b = 1.3, and c = 0.
Example 7: All features of samples in Class 1 and Class 0 are generated independently from N (− 0.3, 1.52) and
N (0.3, 1.52), respectively. In this example, we consider different scenarios with different percentages of complete
samples. For the MCAR case, we consider different values of ρ in the set {0.1, 0.3, 0.5, 0.7, 0.9}. For the MNAR
case, we set a = 0.01, c = 0, and different values of b in the set {1.6, 1.1, 0.5, 0, − 0.8}.

In each experiment, we generated a training data set with 100 samples and an independent validation data set with
200 complete samples. The validation data set was used to choose all tuning parameters. As samples in Group 1 were
complete, we fixed τ̃1 = 0 in our proposed method. We considered 10 values of L̃ in
{0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10}, and 20 values of τ̃2 in [0.01, 1). For all k-NN methods (kNN-C,
kNN-1, kNN-Mean, and kNN-RF), we considered 10 values of the number of nearest neighbors in {1, 2, . . . , 10}. For
all k∗-NN methods (k∗NN-C, k∗NN-1, k∗NN-Mean, and k∗NN-RF), similar to Anava and Levy’s tuning method,21 we
considered different values of the tuning parameter in {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10}. After choosing
those tuning parameters, we used an independent test data set with 500 complete samples to compute the empirical mis-
classification error rates (multiplied by 100) of different methods.

Note that Example 1 is a simple setting with independent normally distributed features. Examples 2 and 3 explore the
cases with correlated features. Two different correlation structures are considered. Example 4 is used to evaluate whether
our proposed INN classifier can perform well when the distributions of some features have heavy tails. Examples 5 and 6
together explore the performance of different methods when the feature vectors of samples in different classes follow dif-
ferent multivariate distributions. For these six examples, we generated the box plots of the empirical misclassification error
rates (multiplied by 100) of different methods using our simulation results from 50 experiments. The box plots of Examples
1 to 6 are shown in Figures 2 to 7, respectively.

As shown in Figures 2 to 7, INN outperforms all competitors in both the MCAR and MNAR cases of Examples 1 to
6. Theoretically, our proposed INN classifier is the same as k∗NN-C when we only use complete training samples, and it is
the same as k∗NN-1 when we only use the data from Modality 1. The comparison between INN and k∗NN-C, k∗NN-1 in
the above six examples indicates that our proposed INN classifier can utilize all available information in the block-missing
multi-modality training data set effectively and therefore could deliver a lower missclassification error rate than methods
that only use complete training samples or modalities that are available in each sample. As k∗-NN is more flexible than the
standard k-NN by using different weight vectors for different test data points, in most cases, k∗NN-C, k∗NN-1,
k∗NN-Mean, and k∗NN-RF perform better than kNN-C, kNN-1, kNN-Mean, and kNN-RF, respectively. We can also
observe that except for Example 4, kNN-Mean and kNN-RF that use an imputed training data set do not perform better
than kNN-C which only uses complete samples. However, in many cases, k∗NN-Mean and k∗NN-RF perform better
than k∗NN-C. Although it is generally difficult to handle missing not at random data, the above numerical results indicate
that INN can make use of the block-missing multi-modality data effectively to build a better classifier in some cases where
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modalities are missing not at random. The results in the MCAR case and the MNAR case of these simulated examples look
similar to some extent. One possible reason is that we control the proportion of missing data carefully such that we have
similar amount of missing data in the MCAR case and the MNAR case.

Example 7 is similar to Example 1. We consider different scenarios with different percentages of complete samples.
This example is used to investigate the effect of the percentage of missing data. The average empirical misclassification
error rates (multiplied by 100) of different classifiers in different scenarios based on 50 experiments are shown in
Figure 8. We can observe that except for kNN-1 and k∗NN-1 that only use all the data from Modality 1, all other classifiers

Figure 2. Box plots of the empirical misclassification error rates (multiplied by 100) of four classifiers based on k-NN, four classifiers

based on k∗-NN, and the proposed INN classifier: (a) MCAR case of Example 1 and (b) MNAR case of Example 1. k-NN: k-nearest
neighbor; INN: integrative nearest neighbor; MCAR: missing completely at random; MNAR: missing not at random.

Figure 3. Box plots of the empirical misclassification error rates (multiplied by 100) of four classifiers based on k-NN, four classifiers

based on k∗-NN, and the proposed INN classifier: (a) MCAR case of Example 2 and (b) MNAR case of Example 2. k-NN: k-nearest
neighbor; INN: integrative nearest neighbor; MCAR: missing completely at random; MNAR: missing not at random.

Figure 4. Box plots of the empirical misclassification error rates (multiplied by 100) of four classifiers based on k-NN, four classifiers

based on k∗-NN, and the proposed INN classifier: (a) MCAR case of Example 3 and (b) MNAR case of Example 3. k-NN: k-nearest
neighbor; INN: integrative nearest neighbor; MCAR: missing completely at random; MNAR: missing not at random.
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deliver decreasing misclassification errors as the percentage of complete samples increases. In all scenarios, our proposed
INN classifier performs best. Compared with the methods only using complete samples (kNN-C and k∗NN-C), INN has
greater improvement in the classification performance when we have fewer complete samples. Although they use the same
imputed data set, k∗NN-Mean and k∗NN-RF seem to utilize the imputed data more effectively than kNN-Mean and
kNN-RF. One possible reason is that the missing data imputation makes the distribution of the feature vector be more non-
uniform (different regions have very different densities), and therefore it is more important to use flexible number of nearest
neighbors for test data points in different regions. For all these simulated examples with two modalities, the average com-
putation time of our proposed INN method is about 2s.

Figure 5. Box plots of the empirical misclassification error rates (multiplied by 100) of four classifiers based on k-NN, four classifiers

based on k∗-NN, and the proposed INN classifier: (a) MCAR case of Example 4 and (b) MNAR case of Example 4. k-NN: k-nearest
neighbor; INN: integrative nearest neighbor; MCAR: missing completely at random; MNAR: missing not at random.

Figure 6. Box plots of the empirical misclassification error rates (multiplied by 100) of four classifiers based on k-NN, four classifiers

based on k∗-NN, and the proposed INN classifier: (a) MCAR case of Example 5 and (b) MNAR case of Example 5. k-NN: k-nearest
neighbor; INN: integrative nearest neighbor; MCAR: missing completely at random; MNAR: missing not at random.

Figure 7. Box plots of the empirical misclassification error rates (multiplied by 100) of four classifiers based on k-NN, four classifiers

based on k∗-NN, and the proposed INN classifier: (a) MCAR case of Example 6 and (b) MNAR case of Example 6. k-NN: k-nearest
neighbor; INN: integrative nearest neighbor; MCAR: missing completely at random; MNAR: missing not at random.
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Next, we compare the classification performance of different classifiers in some complicated cases where
features are collected from three modalities. As we often have fewer complete samples when data are collected
from more modalities, integrative classifiers for block-missing multi-modality data without deleting or imputing
missing data are more needed here. In the following Examples 8 and 9, we assume that features from Modality 1
are always observed while features from the other two modalities can be missing. Therefore, we have M = 4 in these
two examples. We set p1 = p2 = p3 = 60. When we used the MCAR model, we set P(γi2 = 1) = P(γi3 = 1) = ρ.
When we used the MNAR model, we set P(γi2 = 1 ∣ xi, yi) = 1−Φ(a · (xi,A2 − c)T (xi,A2 − c)− b) and
P(γi3 = 1 ∣ xi, yi) = 1−Φ(a · (xi,A3 − c)T (xi,A3 − c)− b), where the sets A2 = {p1 + 1, p1 + 2, ..., p1 + p2} and
A3 = {p1 + p2 + 1, p1 + p2 + 2, ..., p1 + p2 + p3}. The other details about Examples 8 and 9 are shown as follows.

Example 8: All features of samples in Class 0 and Class 1 are generated independently from N (− 0.5, 32) and
N (0.5, 32), respectively. For the MCAR case, we set ρ = 0.4. For the MNAR case, we set a = 1, b = 490, and c = 0.
Example 9: Feature vectors of samples in Class 0 and Class 1 are generated from Multivariate Normal (μ1, σ

2Σ) and
Multivariate Normal (μ2, σ

2Σ), respectively, where μ1 = (− 0.3, . . . , − 0.3)T , μ2 = (0.3, . . . , 0.3)T and σ2 = 4.
The matrix Σ = A⊗ B, where A is a 3 × 3 matrix with the off-diagonal elements as 0.2 and the diagonal elements
as 1, and B is a compound symmetric matrix with off-diagonal elements as 0.5. For the MCAR case, we set
ρ = 0.4. For the MNAR case, we set a = 0.01, b = 6.9, and c = 0.

In the above two examples, we used 160 training samples. As we set ρ = 0.4 and the parameters in the MNAR case
accordingly, there were about 15% complete samples in each case. Similar to the previous examples, we used a validation
data set with 200 complete samples to choose all tuning parameters, and a test data set with 500 complete samples to cal-
culate the misclassification errors. The results of Examples 8 and 9 are shown in Figures 9 and 10, respectively. Similar to
the two modalities cases, INN also outperforms all competitors in both the MCAR and MNAR cases. For these two exam-
ples with three modalities, the average computation time of INN is about 17s. Overall, our proposed INN classifier is com-
putationally efficient.

Besides the above simulation studies, we have conducted some numerical studies to investigate the influence of the
dimensionality of the data set, the noise intensity and outliers. Those results are shown in Sections 1–3 in the
Supplemental Material. We also used the Wilcoxon signed-rank test to compare the misclassification errors of INN and
its competitors for all examples except Example 7 which contains multiple cases. The p-values are shown in Section 5
in the Supplemental Material. In most cases, the p-value is less than 0.001. These results indicate that INN performs sig-
nificantly better than all competitors.

Figure 8. The average empirical misclassification error rates (multiplied by 100) of different classifiers: (a) MCAR case of Example 7

and (b) MNAR case of Example 7. MCAR: missing completely at random; MNAR: missing not at random.
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5 Real data analysis
In this section, we compare the performance of INN and the competitors shown in Section 4 on the diagnosis of
Alzheimer’s disease (AD).

AD is a neurodegenerative disorder characterized by cognitive decline with loss of memory. As reported by Matthews
et al.,31 there were 5 millions Americans aged over 65 years suffering from AD and related dementias in 2014. By 2050, the
burden of AD could rise to 11 millions in the United States and 100 millions worldwide.32 Symptoms of AD typically begin
with Mild Cognitive Impairment (MCI) which is a transitional state between the cognitive decline of normal aging and the
more serious decline of AD. However, patients with MCI often do not automatically convert to AD. As shown in Misra
et al.,33 only approximately 10% to 15% patients with MCI will progress to AD while many MCI patients remain stable or
even revert to the normal cognition. Therefore, MCI patients can be further divided into two categories: progressive MCI
(pMCI) patients who will progress to AD and stable MCI (sMCI) patients who will not.

Despite all scientific efforts, there is no effective treatment for AD currently.34It is essential to develop sensitive bio-
markers and accurate classifiers for the early detection of AD and MCI so that timely treatments can be used to slow
down the progression of the disease. As one of famous AD studies, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (http://adni.loni.usc.edu) is a longitudinal multicenter study designed to develop clinical, imaging, genetic, and
biochemical biomarkers for the early detection and tracking of AD. All data generated by the ADNI study investigators
are available in the ADNI data repository. As a real data example to demonstrate the effectiveness of our proposed
approach, in this study, we focused on the baseline data from ADNI1 which is the first phase of the ADNI study.
Features from three important modalities, including the structural MRI, fluorodeoxyglucose PET, and CerebroSpinal
Fluid (CSF), were used to build classifiers for the detection of AD, MCI, and pMCI.

As MRI and PET are medical imaging modalities, imaging pre-processing is needed to extract features from MRI and
PET images. Similar to the image analysis performed by Zhang and Shen,35 for MRI images, after some correction, spatial

Figure 9. Box plots of the empirical misclassification error rates (multiplied by 100) of four classifiers based on k-NN, four classifiers

based on k∗-NN, and the proposed INN classifier: (a) MCAR case of Example 8 and (b) MNAR case of Example 8. k-NN: k-nearest
neighbor; INN: integrative nearest neighbor; MCAR: missing completely at random; MNAR: missing not at random.

Figure 10. Box plots of the empirical misclassification error rates (multiplied by 100) of four classifiers based on k-NN, four classifiers

based on k∗-NN, and the proposed INN classifier: (a) MCAR case of Example 9 and (b) MNAR case of Example 9. k-NN: k-nearest
neighbor; INN: integrative nearest neighbor; MCAR: missing completely at random; MNAR: missing not at random.
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segmentation, and registration steps, we obtained the subject lableled image based on the Jacob template36 with 93 manu-
ally labeled regions of interest (ROI). For each of the 93 ROIs, we computed the volume of the gray matter as a feature. For
each PET image, we first aligned the PET image to its corresponding MRI using affine registration. Then, we calculated the
average intensity of every ROI in the PET image as a feature. Therefore, we obtained one MRI feature and one PET feature
from each ROI. Note that three features from the CSF modality, including the amyloid β (Aβ42), CSF total tau (t-tau), and
tau hyperphosphorylated at threonine 181 (p-tau), were used in our study.

After the above data processing steps, we got 93 features from each MRI image, 93 features from each PET image, and
three features from each CSF sample. Although the ADNI team has been actively collecting MRI, PET, and CSF data from
each subject, unfortunately, not all subjects in the study have data from all three modalities. While all subjects have baseline
MRI data, only about half of them have PET data and another different half have CSF data. As shown in Thung et al.,37

PET and CSF modalities are missing due to several reasons such as the high cost of the PET scan and the unwillingness of
the patients to receive invasive tests for the collection of CSF samples through the lumber puncture. As we will have no
PET feature (and/or CSF feature) from a subject if the PET (and/or CSF) modality is missing, the ADNI data set used in our
study is a block-missing multi-modality data set. The sample size information about this data set is shown in Table 1. There
are 805 subjects in total, including 186 subjects with AD, 226 normal controls (NC), 226 subjects with sMCI, and 167
subjects with pMCI. These 805 subjects can be also divided into four groups according to four missing patterns. There
are 202 subjects in group 1 (MRI, PET, CSF) with complete features, 194 subjects in group 2 (MRI, PET) with MRI
and PET features only, 204 subjects in group 3 (MRI, CSF) with MRI and CSF features only, and 205 subjects in
group 4 (MRI) with MRI features only. Figure 11 shows the scatter plots of the first two principle components of the com-
plete data. We can observe that AD subjects are relatively easier to be distinguished from normal controls comparing with
MCI subjects, while pMCI and sMCI subjects are difficult to be distinguished.

In this study, we considered three binary classification problems (AD vs. NC, MCI vs. NC, and pMCI vs. sMCI) that are
of great interest. For each problem, we used both our proposed approach and the competitors to build classifiers. In each
analysis, the ADNI block-missing multi-modality data set is randomly divided into a training data set, a validation data set,
and a test data set 50 times. The training data set consists of 25% randomly selected complete samples along with all incom-
plete samples. The validation data set consists of another 25% randomly selected complete samples. Similar to the

Figure 11. The first two principle components (PC) of the complete data: (a) AD vs. NC; (b) MCI vs. NC; and (c) pMCI vs. sMCI.

Alzheimers disease: AD; NC: normal control; MCI: Mild Cognitive Impairment: pMCI: progressive Mild Cognitive Impairment; sMCI:

stable Mild Cognitive Impairment.

Table 1. Sample size information about the ADNI data set used in this study.

(MRI, PET, CSF) (MRI, PET) (MRI, CSF) (MRI) Total

Number of AD subjects 51 42 51 42 186

Number of normal controls 52 49 60 65 226

Number of sMCI subjects 56 70 50 50 226

Number of pMCI subjects 43 33 43 48 167

Total 202 194 204 205 805

ADNI: Alzheimers Disease Neuroimaging Initiative; MRI: magnetic resonance imaging; PET: positron emission tomography; CSF: cerebrospinal fluid;

Alzheimers disease: AD; pMCI: progressive Mild Cognitive Impairment; sMCI: stable Mild Cognitive Impairment.
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simulation study, this validation data set was used to choose all the tuning parameters. The test data set consists of the rest
50% complete samples.

The average misclassification errors of different classifiers for the AD versus NC, MCI versus NC, and pMCI versus
sMCI classifications are shown in Table 2. The results show that each classifier based on the k∗-NN performs better
than the corresponding classifier based on the k-NN for both the AD versus NC and MCI versus NC classifications.
However, for the pMCI versus sMCI classification, as the classification task becomes more difficult, classifiers based
on the k∗-NN and kNN perform similarly. Compared with the methods only using the complete data or the MRI data,
methods based on the missing data imputation have better performance in most cases. However, we can observe that
for the MCI versus NC classification, kNN-mean and k∗NN-mean perform worse than kNN-1 and k∗NN-1, resepectively.
This indicates that classification methods based on the missing data imputation may not be able to utilize the information in
the block-missing multi-modality training data set effectively.

As shown in Table 2, our proposed INN classifier outperforms all competitors from the easiest AD versus NC classi-
fication to the most difficult pMCI versus sMCI classification. For the AD versus NC classification and MCI versus NC
classification, comparing with the best competitor (k∗NN-RF in this example), INN improves the misclassification error by
13.77% and 4.69%, respectively. For the difficult pMCI versus sMCI classification, while the improvement of INN over
methods based on the missing data imputation is not significant, INN performs much better than methods only using the
complete data or the MRI data.

Similar to many weighted nearest neighbors classifiers, INN suffers from the curse of dimensionality. It is important to
reduce the data dimension first by applying dimension reduction techniques such as the principle component analysis
(PCA) if we plan to use INN for a relatively high-dimensional data set. For block-missing multi-modality data such as
the ADNI data set considered here, since we cannot calculate the principle components of incomplete samples, we
cannot apply PCA on the whole data set directly. Therefore, we attempted to reduce the dimensionality by applying
PCA on each modality separately. For each modality, we selected top principle components that cumulatively explained
70% variance and then repeated our analysis. The results are shown in Table 3. Our proposed INN classifier still has the
best performance. If we reduce the data dimension by PCA first, kNN-1 and k∗NN-1 that only use MRI data have signifi-
cantly improved performance on all three classification tasks. The k∗NN-RF method also performs slightly better.
However, all other classifiers perform worse on some classification tasks. Our proposed INN has a subtle improvement
in the classification of MCI versus NC while performs slightly worse on the other two classification tasks. As shown in
this real data analysis example, applying PCA on different modalities separately may not be an effective way to reduce
the dimension for block-missing multi-modality data. One possible reason is that we could not apply PCA on the
whole data set and thus had to ignore the correlation among different modalities to some extent. This raises an interesting
and important future work about the development of effective dimension reduction techniques for high-dimensional
block-missing multi-modality data.

Overall, this real data analysis example indicates that our proposed method could incorporate all available information
in the block-missing multi-modality training data effectively. It can serve as a promising tool for modern real classification
applications where features are often collected from multiple modalities and some modalities can be missing.

Table 2. Misclassification errors of different classifiers for the AD vs. NC, MCI vs. NC, and pMCI vs. sMCI classifications.

Methods AD vs. NC MCI vs. NC pMCI vs. sMCI

kNN-C 23.93 (1.07) 36.65 (0.91) 45.57 (0.78)

k∗NN-C 22.45 (1.22) 33.17 (0.70) 45.77 (0.95)

kNN-1 24.72 (0.92) 33.71 (0.80) 39.96 (0.67)

k∗NN-1 21.06 (0.69) 32.83 (0.69) 42.59 (0.75)

kNN-Mean 18.23 (0.77) 34.65 (0.70) 38.55 (0.90)

k∗NN-Mean 17.13 (0.75) 33.46 (0.58) 38.39 (0.83)

kNN-RF 16.49 (0.77) 31.12 (0.71) 37.96 (0.74)

k∗NN-RF 16.19 (0.84) 31.12 (0.62) 38.08 (0.85)

INN 13.96 (0.62) 29.66 (0.67) 37.33 (0.77)

AD: Alzheimers disease: NC: normal control; MCI: Mild Cognitive Impairment: pMCI: progressive Mild Cognitive Impairment; sMCI: stable Mild Cognitive

Impairment; INN: integrative nearest neighbor.

Note: The values in the parentheses are the standard errors.
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6 Concluding remarks
In this paper, we developed a new integrative nearest neighbor classifier for binary classification problems with a
block-missing multi-modality training data set without deleting or imputing any missing data. For each test data point,
the proposed INN classifier determines the weights on the class labels of complete and incomplete training samples adap-
tively by minimizing the worst-case upper bound on the estimation error of the regression function at the test data point
over a convex class of functions. The corresponding optimization problem is a convex minimization problem which can be
solved efficiently by an iteration algorithm. Comparing with methods that only use complete samples or modalities that are
available in each sample, our proposed INN classifier has better classification performance by harnessing all available
information within complete samples as well as incomplete samples. The advantage of INN has been demonstrated in
both the theoretical and numerical studies. The comparison between our method with methods that impute the missing
data also indicates the advantage of INN, even for the challenging case where some modalities are missing not at random.

One general shortcoming of classifiers based on nearest neighbors is the so-called “curse of dimensionality.” The per-
formance of these classifiers often deteriorates as the dimension of the considered problem increases. As INN depends on
the distances between the test data point and its nearest neighbors, INN also suffers from the “curse of dimensionality.”
When there are a lot of features collected from some modalities (e.g. various omics-data), it is important to apply
feature selection or dimension reduction techniques38–40 to reduce the dimension first. The development of effective
feature selection and dimension reduction techniques for high dimensional block-missing multi-modality data is an import-
ant future work.
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5 Appendix
In this section, we show all the proofs.

Proof of Proposition 1: According to Theorem 3.3 in Anava and Levy,21 Step 3 in INN halts after exactly kx0 iterations.
Therefore, kx0 = 1 if and only if λ1 ≥ α(2). As λ1 = α(1) + 1, we know that kx0 = 1 if and only if t0 ≥ β(2) − β(1). Similarly,
kx0 = k + 1 if and only if λk > α(k+1) and λk+1 ≤ α(k+2). As

λk = 1

k

∑k
i=1

α(i) +
����������������������������
k + (

∑k
i=1

α(i))
2 − k

∑k
i=1

α2(i)

√√√√⎛
⎝

⎞
⎠,

we can show that

λk ≤ α(k+1)

⇔ k2α2(k+1) − 2kα(k+1)

∑k
i=1

α(i) ≥ k − k
∑k
i=1

α2(i)

⇔ 1 ≤
∑k
i=1

(α(k+1) − α(i))
2

⇔ t0 ≤
��������������������∑k
i=1

(β(k+1) − β(i))
2

√√√√ .

Therefore, we have kx0 = k + 1 if and only if
����������������������∑k

i=1 (β(k+1) − β(i))
2

√
< t0 ≤

�����������������������∑k+1
i=1 (β(k+2) − β(i))

2
√

. If

t0 >
�����������������������∑n−1

i=1 (β(k+2) − β(i))
2

√
, we have λn−1 > α(n), and therefore, kx0 = n in this case.

Proof of Proposition 2: If k ≤ N (x0)/2, we have k − N (x0) ≤ −N (x0)/2, and

P(β(k) > ϵ ∣ x0, Γ)

≤ P(
∑M
m=1

∑nm
i=1

I {β[m]i ≤ϵ} ⩽ k ∣ x0, Γ)

= P(
∑M
m=1

∑nm
i=1

[I {‖x[m]i,Sm−x0,Sm‖2⩽(ϵ−τ∗m)/L∗}

− F [m]
x0

((ϵ− τ∗m)/L
∗)] ⩽ k − N (x0) ∣ x0, Γ)

≤ P(
∑M
m=1

∑nm
i=1

[F [m]
x0

((ϵ− τ∗m)/L)

− I {‖x[m]i,Sm−x0,Sm‖2⩽(ϵ−τ∗m)/L∗}
] ≥ N (x0)/2 ∣ x0, Γ).
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Since β[m]i ’s are conditionally independent, according to the Bernstein inequality, we have

P(
∑M
m=1

∑nm
i=1

[F [m]
x0

((ϵ− τ∗m)/L)

− I{‖x[m]i,Sm−x0,Sm‖2⩽(ϵ−τ∗m)/L∗}
] ≥ N (x0)/2 ∣ x0, Γ)

≤ e

−

N (x0)
2

4

2
∑M

m=1

∑nm

i=1
F
[m]
x0

(

ϵ− τ∗m
L∗

)(1−F
[m]
x0

(

ϵ− τ∗m
L∗

))+
N (x0)

3

≤ exp (
−N (x0)

2

4

2N (x0)+ N (x0)

3

) = exp (− 3N (x0)

28
)

≤ exp (− 3k/14).

Proof of Theorem 1: Let kx0 denote the number of nonzero elements in ω̂. Define
λkx0 = ‖ω̂‖2 +

∑M
m=1

∑nm
i=1 ω̂

[m]
i (τ̃m + L̃‖x[m]i,Sm

− x0,Sm‖2). According to Assumptions A1 and A2, we have

P(|η̂ x0( ) − η x0( )| ≥ t0λkx0 ∣ x0, {X
[m]
Sm

}Mm=1, Γ)

≤ 2 exp (− t20/2) =
δ

2
.

In addition, according to Step 3 in the INN classifier, we know that λkx0 ≤ α(kx0+1). Therefore, t0λkx0 ≤ t0α(kx0+1) = β(kx0+1),
and we have

P |η̂(x0)− η(x0)| ≥ β(kx0+1) ∣ x0, {X
[m]
Sm

}Mm=1, Γ
( )
≤ P |η̂(x0)− η(x0)| ≥ t0λkx0 ∣ x0, {X

[m]
Sm

}Mm=1, Γ
( )

≤ δ

2
.

For a given x0 ∈ Ωϵ, we have

P Φn(x0) ≠ Φ∗(x0) ∣ x0, Γ
( ) =

P η̂(x0) ⩾
1

2
, η(x0) <

1

2
∣ x0, Γ

( )

+ P η̂ x0( ) < 1

2
, η x0( ) ≥ 1

2
∣ x0, Γ

( )
.

Suppose that η(x0) ≥ 1/2+ ϵ, then we can show that

P Φn x0( ) ≠ Φ∗ x0( ) ∣ x0, Γ
( )

=P η̂ x0( ) < 1

2
∣ x0, Γ

( )

=P η̂ x0( ) < 1

2
, η̂ x0( ) − η x0( )∣∣ ∣∣ < β(kx0+1) ∣ x0, Γ

( )

+ P η̂ x0( ) < 1

2
, η̂ x0( ) − η x0( )∣∣ ∣∣ ≥ β(kx0+1) ∣ x0, Γ

( )

⩽P(β(kx0+1) > η(x0)− 1

2
∣ x0, Γ)+ δ

2
.
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Since we choose t0 =
������������
2 log (4/δ)

√
, according to Proposition 1 and Assumption A3, we know that for a positive integer

k0 ∈ [5 log (4/δ), N (x0)/2], we have

P(kx0 ≥ k0 ∣ x0, Γ)

= P(t20 >
∑k0−1

i=1

(β(k0) − β(i))
2 ∣ x0, Γ)

= P( exp (− 1

2

∑k0−1

i=1

(β(k0) − β(i))
2) >

δ

4
∣ x0, Γ)

≤ 4

δ
E( exp (− 1

2

∑k0−1

i=1

(β(k0) − β(i))
2) ∣ x0, Γ) ≤ δ

4
.

Therefore, we have

P Φn x0( ) ≠ Φ∗ x0( ) ∣ x0, Γ
( )
≤ P(β(kx0+1) > η(x0)− 1

2
∣ x0, Γ)+ δ

2

≤ P(β(k0) > η(x0)− 1

2
∣ x0, Γ)+ δ

4
+ δ

2

≤ P(β(k0) > ϵ ∣ x0, Γ)+ 3δ

4
.

In addition, according to Proposition 2, we have

P(β(k0) > ϵ ∣ x0, Γ) ≤ exp (− 3k0/14)

≤ exp (− 15

14
log (

4

δ
)) ≤ δ

4
.

Hence, we conclude that

P Φn x0( ) ≠ Φ∗ x0( ) ∣ x0, Γ
( ) ≤ δ,

and

P Φn x0( ) = Φ∗ x0( ) ∣ x0, Γ
( ) ≥ 1− δ.

Similarly, suppose that η(x0) ≤ 1/2− ϵ, then we can also show that

P Φn(x0) ≠ Φ∗(x0) ∣ x0, Γ
( ) = P η̂(x0) ⩾

1

2
∣ x0, Γ

( )

≤ P(β(kx0+1) >
1

2
− η(x0) ∣ x0, Γ)+ δ

2

≤ P(β(k0) > ϵ ∣ x0, Γ)+ P(kx0 ≥ k0 ∣ x0, Γ)+ δ

2
≤ δ,

and therefore

P Φn x0( ) = Φ∗ x0( ) ∣ x0, Γ
( ) ≥ 1− δ.
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Integrative nearest neighbor (INN) classifier
Input: a block-missing multi-modality training data set {(X[m]

Sm
, y[m])}Mm=1, a test data point x0 ∈ R p, values of the parameters L̃ and

τ̃m’s.

1. For each 1 ≤ m ≤ M and 1 ≤ i ≤ nm, calculate α[m]i = L̃‖x[m]i,Sm
− x0,Sm‖2 + τ̃m.

2. Sort α[1]1 , α[1]2 , , α[1]n1 , α
[2]
1 , , α[M]

nM in the ascending order. Let α(i)’s denote the ordered values.

3. Set λ0 = α(1) + 1 and k = 0. While λk > α(k+1) and k ≤ n− 1, calculate

k = k+ 1;

λk = 1

k

∑k
i=1

α(i) +

����������������������������
k+

∑k
i=1

α(i)

( )2

−k
∑k
i=1

α2(i)

√√√√
⎛
⎜⎝

⎞
⎟⎠.

4. For each 1 ≤ m ≤ M and 1 ≤ i ≤ nm, calculate the weight

ω̂[m]
i =

λk − α[m]i

( )
· I

α[m]i <λk
{ }

∑M
m=1

∑nm
i=1 λk − α[m]i

( )
· I

α[m]i <λk
{ } .

Calculate the estimate of η(x0)

η̂(x0) =
∑M
m=1

∑nm
i=1

ω̂[m]
i y[m]i .

Output: Φn(x0) = I {η̂(x0)≥1
2
}.

Yu and Hou 21


	 1 Introduction
	 2 Statistical setting and methodology
	 2.1 Statistical setting
	 2.2 Method

	 3 Theoretical study
	 4 Simulation study
	 5 Real data analysis
	 6 Concluding remarks
	 References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


